Charm: Exploiting Geographical Diversity Through Coherent Combining in LPWANs
OR
When They Go Low, We Go Lower (Power)

IPSN 2018, Porto

Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Artur Balanuta, Swarun Kumar, Bob Iannucci, Anthony Rowe

Electrical And Computer Engineering
Carnegie Mellon University, Pittsburgh PA and Silicon Valley CA
Low-Power Wide-Area Networking (LPWAN)
LPWAN’s potential

- Sub-GHz ISM band
- chirp spread-spectrum (CSS)
- 10km range in line-of-sight
- Low data rate (0.25 kbps – 27 kbps)
- 5+ year battery life
- Thousands of devices per gateway
OpenChirp In Pittsburgh

- **openchirp.io**
 CMU’s LoRaWAN network in Pittsburgh

- 4 outdoor gateways + multiple indoor gateways
Coverage
Penetration Inside Buildings

Bi-directional packet success rate

Gateway RSSI for successful packets:

-150 dBm
-105 dBm
-60 dBm
Client Device Battery Life

- Wireless transmissions dominate energy usage
- Increasing data rate and reducing retransmissions significantly improves battery life
LPWANs have lots of gateways.....

Can we use them to improve network performance?
Coherent Combining

• Multiple gateways hear the same weak transmission
• Coherent combining in the cloud
• e.g. Cloud Radio Access Networks (C-RAN) in cellular communication
Challenges

• High bandwidth connectivity to the cloud

• Nanosecond-scale synchronization

• Expensive computing resources for large number of streams

• Latency
Charm

- **Practical coherent combining**
 Leverage diversity from multiple gateway receivers

- **Software architecture**
 - Scaleable two-phase protocol
 - Local packet detection

- **Hardware platform**
 Auxiliary low-cost SDR-like platform for gateways
LoRaWAN
Charm: Two-Phase Protocol
Charm: Local Packet Detection

Uses only the preamble and sync header
Charm: Enhanced Packet Detection

- Uses the entire packet

Diagram:
- Chirp spread-spectrum packet
- Subsample (folding)
- Matched filtering
- Known signal pattern
- Threshold
Charm: Gateway Hardware

- Semtech SX1257 frontend with MicroSemi IGLOO FPGA

- Outputs radio I/Q stream like an SDR

- Auxiliary hardware for existing gateways and interfaces with raspberry Pi
Practical Coherent Combining With Charm

- High bandwidth connectivity to the cloud
 - upload samples on request

- Nanosecond-scale synchronization
 - local packet detection simplifies synchronization

- Expensive computing resources for large number of streams
 - selective combination of sample streams

- Latency
 - LoRaWAN ~1 sec to ACK
Benchmark: Packet Detection

![Bar chart showing signal-to-noise ratio vs spreading factor for different detection methods.]

- Charm enhanced detection
- Charm local detection
- LoRaWAN

Signal-to-noise ratio (dB)

Spreading factor

-70 -60 -50 -40 -30 -20 -10 0
Benchmark: Improved Network And Device Performance

Combined signal SNR increases logarithmically

Results into improved battery life on client devices
Simulation: Dense Deployment

LoRaWAN

Charm

Improvements

Increase in coverage area: 46.60%

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Battery Life</th>
<th>Improved region (by area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>2x</td>
<td>35.33%</td>
</tr>
<tr>
<td>4x</td>
<td>4x</td>
<td>22.30%</td>
</tr>
<tr>
<td>8x</td>
<td>8x</td>
<td>2.26%</td>
</tr>
</tbody>
</table>
Simulation: Random Deployment

Improvements

Increase in coverage area: 74.59%

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Battery Life</th>
<th>Improved region (by area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>2x</td>
<td>33.70%</td>
</tr>
<tr>
<td>4x</td>
<td>4x</td>
<td>25.82%</td>
</tr>
<tr>
<td>8x</td>
<td>8x</td>
<td>3.48%</td>
</tr>
</tbody>
</table>
Future Work

• **Collisions:** can we decode collisions?

• **Scalability:** can we avoid continuously streaming to the cloud?

• **Hardware Architecture:** how can we leverage new radio front-ends

Analog Devices ADALM-Pluto
Conclusions

- Decode weak transmissions through coherent combining
 - Charm’s two-phase protocol
 - On-demand upload - save bandwidth
 - Local packet detection - simplify synchronization requirements and computation
 - Selective combination - better scalability
- SDR-like auxiliary hardware to capture I/Q streams
- Performance
 - Improve coverage up to 98%
 - Improve battery life up to 8x
 - Effectively reduce coverage holes
 - No changes on low-power devices
Thank you!

Q&A

Adwait Dongare (adongare@cmu.edu)